이 교수는 ‘골스캔에서 골전이 진단에 Grad-CAM을 활용한 CNN과 트랜스포머 모델의 진단 성능 비교’를 발표해 수상의 영예를 안았다.
골스캔은 골 활성화 영역을 영상으로 보여주는 검사로, 뼈의 염증이나 손상, 암 전이 여부 등을 확인하기 위해 시행한다. 특히 비교적 골전이가 흔한 전립선암, 유방암 환자의 경우 주로 골스캔을 시행한다. CT나 MRI에 비해 적은 비용으로 전신의 뼈를 한 번에 확인할 수 있어 환자 부담이 적기 때문이다.
최근 엑스레이나 내시경 등 다양한 의료영상에서 인공지능(AI) 모델 연구가 활발히 진행되고 있지만 골스캔에 대한 인공지능 연구는 아직 적다. 특히 트랜스포머 모델이나 ConvNeXt 등 성능이 크게 향상된 최신 인공지능 모델이 실제 의료영상 진단에 있어서 유용한지에 대해 연구된 바는 많지 않다.

이 교수는 “연구 결과를 바탕으로 ConvNeXt와 같은 최신 인공지능 모델이 골스캔을 포함한 여러 의료영상에 널리 사용될 수 있다고 생각한다”며 “앞으로도 환자가 더욱 신속하고 정확하게 의료영상 진단을 받을 수 있도록 최신 기술 적용에 대한 다양한 연구를 꾸준히 이어가겠다”고 말했다.
오하은 헬스인뉴스 기자 press@healthinnews.kr
오하은 기자
press@healthinnews.kr


